Abstract

The complex physiology of the gastrointestinal tract is regulated by intricate neural networks embedded within the gut wall. How neural crest cells colonize the intestine to form the enteric nervous system is of great interest to developmental biologists, but also highly relevant for understanding gastrointestinal disorders. A recent paper in BMC Biology addresses this issue with live imaging of gut explants from mouse embryos.See research article: http://www.biomedcentral.com/1741-7007/12/23.

Highlights

  • The complex physiology of the gastrointestinal tract is regulated by intricate neural networks embedded within the gut wall

  • Commentary Neural crest (NC) cells constitute the archetypal migratory cell type of vertebrate embryos. They originate at the dorsal neural tube and, migrating along stereotypic pathways, colonize different regions of the embryo giving rise to diverse tissues, including neurons and glia of the peripheral nervous system (PNS), melanocytes, and musculoskeletal components of the head [1]. Most of these NC cell populations move as a cell collective to reach their final destination, but their specific migratory behavior can vary depending on the particular group of NC cells and the species

  • Enteric neurons and the majority of glial cells are packaged into interconnected ganglia that are organized into two layers, the outer myenteric and the inner submucosal plexuses, that extend as two concentric sleeves throughout the length of the gastrointestinal tract

Read more

Summary

Introduction

The complex physiology of the gastrointestinal tract is regulated by intricate neural networks embedded within the gut wall. The gut continues to expand long after the entire length of the intestinal wall has been colonized, demanding a continuous proliferation and reorganization of ENCCs. The current model for the uniform colonization of the gut mesenchyme posits that at the ENCC front some cells retain their migratory character and continue to advance caudally while others cease to migrate and stay behind in order to populate more rostral gut regions.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.