Abstract

This work is devoted to the study of a singular reaction–diffusion system arising in modelling the introduction of a lethal pathogen within an invading host population. In the absence of the pathogen, the host population exhibits a bistable dynamics (or Allee effect). Earlier numerical simulations of the singular SI model under consideration have exhibited stable travelling waves and also, under some circumstances, a reversal of the wave front speed due to the introduction of the pathogen. Here we prove the existence of such travelling wave solutions, study their linear stability and give analytical conditions yielding a reversal of the wave front speed, i.e. the invading host population may eventually retreat following the introduction of the lethal pathogen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call