Abstract
We study a reaction diffusion model recently proposed in [5] to describe the spatiotemporal evolution of the bacterium <em>Bacillus subtilis</em> on agar plates containing nutrient. An interesting mathematical feature of the model, which is a coupled pair of partial differential equations, is that the bacterial density satisfies a degenerate nonlinear diffusion equation. It was shown numerically that this model can exhibit quasi-one-dimensional constant speed travelling wave solutions. We present an analytic study of the existence and uniqueness problem for constant speed travelling wave solutions. We find that such solutions exist only for speeds greater than some threshold speed giving minimum speed waves which have a sharp profile. For speeds greater than this minimum speed the waves are smooth. We also characterise the dependence of the wave profile on the decay of the front of the initial perturbation in bacterial density. An investigation of the partial differential equation problem establishes, via a global existence and uniqueness argument, that these waves are the only long time solutions supported by the problem. Numerical solutions of the partial differential equation problem are presented and they confirm the results of the analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.