Abstract

Inspired by applications, we consider reaction–diffusion equations on R that are stochastically forced by a small multiplicative noise term that is white in time, coloured in space and invariant under translations. We show how these equations can be understood as a stochastic partial differential equation (SPDE) forced by a cylindrical Q-Wiener process and subsequently explain how to study stochastic travelling waves in this setting. In particular, we generalize the phase tracking framework that was developed in Hamster and Hupkes (2018,2019) for noise processes driven by a single Brownian motion. The main focus lies on explaining how this framework naturally leads to long term approximations for the stochastic wave profile and speed. We illustrate our approach by two fully worked-out examples, which highlight the predictive power of our expansions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.