Abstract

In this paper we consider an adaptive spatial discretization scheme for the Nagumo PDE. The scheme is a commonly used spatial mesh adaptation method based on equidistributing the arclength of the solution under consideration. We assume that this equidistribution is strictly enforced, which leads to the non-local problem with infinite range interactions that we derived in Hupkes and Van Vleck (J Dyn Differ Equ 28:955, 2016). For small spatial grid-sizes, we establish some useful Fredholm properties for the operator that arises after linearizing our system around the travelling wave solutions to the original Nagumo PDE. In particular, we perform a singular perturbation argument to lift these properties from the natural limiting operator. This limiting operator is a spatially stretched and twisted version of the standard second order differential operator that is associated to the PDE waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.