Abstract

We consider a bistable ($0\textless{}\theta\textless{}1$ being the three constant steady states) delayed reaction diffusion equation, which serves as a model in population dynamics. The problem does not admit any comparison principle. This prevents the use of classical technics and, as a consequence, it is far from obvious to understand the behaviour of a possible travelling wave in $+\infty$. Combining refined {\it a priori} estimates and a Leray Schauder topological degree argument, we construct a travelling wave connecting 0 in $-\infty$ to \lq\lq something" which is strictly above the unstable equilibrium $\theta$ in $+\infty$. Furthemore, we present situations (additional bound on the nonlinearity or small delay) where the wave converges to 1 in $+\infty$, whereas the wave is shown to oscillate around 1 in $+\infty$ when, typically, the delay is large.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call