Abstract
In this paper, we consider the growth dynamics of a single-species population with two age classes and a fixed maturation period living in a spatial transport field. A Reaction Advection Diffusion Equation (RADE) model with time delay and nonlocal effect is derived if the mature death and diffusion rates are age independent. We discuss the existence of travelling waves for the delay model with three birth functions which appeared in the well-known Nicholson's blowflies equation, and we consider and analyze numerical solutions of the travelling wavefronts from the wave equations for the problems with nonlocal temporally delayed effects. In particular, we report our numerical observations about the change of the monotonicity and the possible occurrence of multihump waves. The stability of the travelling wavefront is numerically considered by computing the full time-dependent partial differential equations with nonlocal delay.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.