Abstract

We briefly report on a recent proposal (Fiore in J Phys A Math Theor 51:085203, 2018) for simplifying the equations of motion of charged particles in an electromagnetic (EM) field $F^{\mu\nu}$ that is the sum of a plane travelling wave $F_t^{\mu\nu}(ct\!-\!z)$ and a static part $F_s^{\mu\nu}(x,y,z)$; it adopts the light-like coordinate $\xi=ct\!-\!z$ instead of time $t$ as an independent variable. We illustrate it in a few cases of extreme acceleration, first of an isolated particle, then of electrons in a plasma in plane hydrodynamic conditions: the Lorentz-Maxwell \& continuity PDEs can be simplified or sometimes even completely reduced to a family of decoupled systems of ordinary ones; this occurs e.g. with the impact of the travelling wave on a vacuum-plasma interface (what may produce plasma waves or the slingshot effect).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.