Abstract

The dynamic and static properties of structured surfaces have important functions in nature. In particular, wrinkles have important static roles, for example, increasing surface area, but dynamic roles of wrinkles remain poorly understood. Specifically, to understand and utilize the dynamic functions of wrinkles, it is necessary to observe wrinkle formation directly. In this study, a polyion complex (PIC) is formed on a hydrogel surface by electrophoresis, and the process of wrinkle formation through a transparent electrode is directly observed. By quantitative analysis of the wavelength and amplitude of wrinkles, it is found that the wrinkles move randomly in a wavy pattern in the initial stage of growing process. Furthermore, the direction of wavy motion of wrinkles is controlled by the compression of hydrogels in the in-plane direction. The present study provides important insights into the fabrication of wrinkled surfaces with a controlled flow direction; opening the possibility for active wrinkles used in the development of functional surface structures as actuators that are capable of transporting small objects in water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.