Abstract

We consider the diffusive Nicholson's blowflies equation where the time delay is of the distributed kind, incorporated as an integral convolution in time. Of interest is the question of the existence of travelling front solutions and their qualitative form. For small delay, existence of such fronts is proved when the convolution kernel assumes a special form, enabling the use of linear chain techniques. The resulting higher-dimensional system is studied using geometric singular perturbation theory. The method should be applicable to other such kernels as well. For larger delays, numerical simulations show that the main effect is a loss of monotonicity of the wave front.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.