Abstract

The goal of cancer genome sequencing projects is to determine the genetic alterations that cause common cancers. Many malignancies arise during the clonal expansion of a benign tumor which motivates the study of recurrent selective sweeps in an exponentially growing population. To better understand this process, Beerenwinkel et al. [PLoS Comput. Biol. 3 (2007) 2239--2246] consider a Wright--Fisher model in which cells from an exponentially growing population accumulate advantageous mutations. Simulations show a traveling wave in which the time of the first $k$-fold mutant, $T_k$, is approximately linear in $k$ and heuristics are used to obtain formulas for $ET_k$. Here, we consider the analogous problem for the Moran model and prove that as the mutation rate $\mu\to0$, $T_k\sim c_k\log(1/\mu)$, where the $c_k$ can be computed explicitly. In addition, we derive a limiting result on a log scale for the size of $X_k(t)={}$the number of cells with $k$ mutations at time $t$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.