Abstract

We study traveling wave solutions arising in Sivashinsky’s model of subsonic detonation which describes combustion processes in inert porous media. Subsonic (shockless) detonation waves tend to assume the form of a reaction front propagating with a well defined speed. It is known that traveling waves exist for any value of thermal diffusivity [5]. Moreover, it has been shown that, when the thermal diffusivity is neglected, the traveling wave is unique. The question of whether the wave is unique in the presence of thermal diffusivity has remained open. For the subsonic regime, the underlying physics might suggest that the effect of small thermal diffusivity is insignificant. We analytically prove the uniqueness of the wave in the presence of non-zero diffusivity through applying geometric singular perturbation theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call