Abstract
This paper is concerned with traveling wave solutions of a nonlocal dispersal SIR epidemic model with standard incidence. We show that our results on existence and nonexistence of traveling wave solutions are determined by the basic reproduction number of the corresponding ordinary differential model and the minimal wave speed. These threshold dynamics are proved by constructing an invariant cone and applying Schauder's fixed point theorem on this cone and the Laplace transform. The main difficulties are the lack of an occurrence of a regularizing effect and the loss of the order-preserving property of this model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.