Abstract
Traveling wave solutions of cellular automata (CA) with two states and nearest neighbors interaction on one-dimensional (1-D) infinite lattice are computed. Space and time periods and the number of distinct waves have been computed for all representative rules, and each velocity ranging from 2 to 22. This computation shows a difference between spatially extended systems, generating only temporal chaos and those producing as well spatial complexity. In the first case wavelengths are simply related to the velocity of propagation and the dispersivity is an affine function, while in the second case (which coincides with Wolfram class 3), the dispersivity is multiform and its dependence on the velocities is highly random and discontinuous. This property is typical of space-time chaos in CA. (c) 1999 American Institute of Physics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.