Abstract

We consider a Belousov-Zhabotinskii reaction-diffusion system with nonlocal effects and study the existence of traveling wave solutions. By constructing appropriate super- and sub-solutions and using Schauder’s fixed point theorem, we show that there is a critical speed c * > 0 such that when the wave speed c > c *, there exists a traveling wave solution connecting (0, 0) to a positive steady-state, while there is no traveling wave solution when c < c *. Moreover, we also examine a special case where ϕ 1(x) is the Dirac function, and demonstrate the existence of the traveling wave solution connecting the equilibria (0, 0) and (1, 1) for c > c *, whereas the traveling wave solution does not exist when c < c *. Finally, the long-time behavior of the solution is investigated through numerical simulation and theoretical analysis, and it is found that the choice of kernel functions and the setting of initial value conditions play a crucial role.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.