Abstract
We present an easily solvable 1D traveling wave model for laser-guided discharges. By assuming constant propagation speed u, the hydro/electrodynamic/chemistry equations are reduced to ordinary differential equations in retarded time τ. Negative discharges are shown to propagate only if u>μEb, where μ is electron mobility and Eb is the breakdown field; positive discharges propagate only if the channel preconductance exceeds ∼6×10−11 m/Ω. The axial electric field E is shown to spike up to several times Eb and then relax to ∼Eb for as long as the gas remains cold. In this streamer region, the channel conductance, current, and potential all increase linearly with τ. The transition to the leader stage, where E is much smaller, occurs in two steps: excitation of vibrational and low-lying electronic states, then gas heating. The propagation range decreases as a function of initial radius and (for given maximum voltage) of the voltage rise rate. Expansion of the hot channel is shown to increase the range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.