Abstract

Coupled oscillators can exhibit complex spatiotemporal dynamics. Here, we study the propagation of nonlinear waves into an unstable state in dissipative coupled oscillators. To this, we consider the dissipative Frenkel–Kontorova model, which accounts for a chain of coupled pendulums or Josephson junctions and coupling superconducting quantum interference devices. As a function of the dissipation parameter, the front that links the stable and unstable state is characterized by having a transition from monotonous to non-monotonous profile. In the conservative limit, these traveling nonlinear waves are unstable as a consequence of the energy released in the propagation. Traveling waves into unstable states are peculiar of dissipative coupling systems. When the coupling and the dissipation parameter are increased, the average front speed decreases. Based on an averaging method, we analytically determine the front speed. Numerical simulations show a quite fair agreement with the theoretical predictions. To show that our results are generic, we analyze a chain of coupled logistic equations. This model presents the predicted dynamics, opening the door to investigate a wider class of systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.