Abstract

This paper is concerned with the existence, asymptotic behavior, strict monotonicity, and uniqueness of traveling wave fronts connecting two half-positive equilibria in a delayed lattice competitive system. We first prove the existence of traveling wave fronts by constructing upper and lower solutions and Schauder’s fixed point theorem, and then, for sufficiently small intraspecific competitive delays, prove that these traveling wave fronts decay exponentially at both infinities. Furthermore, for system without intraspecific competitive delays, the strict monotonicity and uniqueness of traveling wave fronts are established by means of the sliding method. In addition, we give the exact decay rate of the stronger competitor under some technique conditions by appealing to uniqueness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.