Abstract

Reaction–diffusion systems serve as relevant models for studying complex patterns in several fields of nonlinear sciences. A localized pattern is a stable non-constant stationary solution usually located far away from neighborhoods of bifurcation induced by Turing’s instability. In the study of FitzHugh–Nagumo equations, we look for a standing pulse with a profile staying close to a trivial background state except in one localized spatial region where the change is substantial. This amounts to seeking a homoclinic orbit for a corresponding Hamiltonian system, and we utilize a variational formulation which involves a nonlocal term. Such a functional is referred to as Helmholtz free energy in modeling microphase separation in diblock copolymers, while its global minimizer does not exist in our setting of dealing with standing pulse. The homoclinic orbit obtained here is a local minimizer extracted from a suitable topological class of admissible functions. In contrast with the known results for positive standing pulses found in the literature, a new technique is attempted by seeking a standing pulse solution with a sign change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.