Abstract
This paper considers a simplified model of active combustion in a fluid flow, with the reaction influencing the flow. The model consists of a reaction-diffusion-advection equation coupled with an incompressible Navier-Stokes system under the Boussinesq approximation in an infinite vertical strip. We prove that for certain ignition nonlinearities, including all that are C2, and for any domain width, planar traveling front solutions are nonlinearly and exponentially stable within certain weighted H2 spaces, provided that the Rayleigh number ρ is small enough. The same result holds for bistable nonlinearities in unweighted H2 spaces. We also obtain uniform bounds on the Nusselt number, the bulk burning rate, and the average maximum vertical velocity for chemistries that include bistable and ignition nonlinearities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.