Abstract
In this paper, we consider predicting travel time for aircraft operated in multi-airport systems by modeling and simulating a multiclass queuing network, which can systematically capture the complicated coupling relationship among multiple airports and terminal airspace and the complex nature of flight trajectories following different traffic flow patterns. In this multiclass queuing network model, each class of queuing network, named a class of customers, is modeled with the data of a traffic flow pattern, which is identified for a cluster of flight trajectories. Airports and airspace sectors are correspondingly modeled as networked servers with nonhomogeneous and time-varying arrival rate, service rate and server capacity to serve those classes of customers following their specific routing probabilities. Then, all of the parameters for setting up the multiclass queuing network model can be properly estimated using historical 4D flight trajectory data. To illustrate the superiority of this model, both average travel time for each class of customers, i.e., aircraft following a particular flow pattern, and the arrival time for an individual flight are predicted via simulations of a multiclass queuing network, and furthermore, compared with the real travel time. A typical example of a multi-airport system, the Guangdong-Hong Kong-Macau Greater Bay Area in China, is utilized to showcase the prediction performance of the proposed multiclass queuing network simulation model. The simulation experiments of the case study demonstrate that the proposed model well fits this multi-airports system. For most of the time periods, the percentage error (PE) of simulated average travel time and real average travel time is less than 5%. The travel time prediction for a random individual flight can achieve around 1% of the percentage error in terms of point estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.