Abstract

In recent years, Bayesian networks and neural networks have been widely applied to the travel demand prediction area. However, their prediction performance is rarely directly compared. By experimental tests conducted using the same dataset, a Bayesian network model and a neural network model are compared for the travel mode analysis for the first time in this paper. It is found that the fully Bayesian network model tends to overfit the training set when the network itself is considerable complicated. The TAN structure otherwise has a better generalization performance and can achieve a better and more stable prediction performance, for its prediction accuracy 75.4%±0.63%, compared to the BP neural network model ,which prediction accuracy is 72.2%±3.01%. Experiment and statistical tests demonstrate the superiority of Bayesian networks and we propose using Bayesian networks, especially TAN, instead of neural networks in the travel mode choice prediction field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.