Abstract
Recently, the first author has proposed a new coupled-loading-rate hypothesis as a unique cause of both brain and spinal injuries, which states that they are both caused by a Euclidean jolt, an impulsive loading that strikes head and spine (or, any other part of the human body)- in several coupled degrees-of-freedom simultaneously. Injury never happens in a single direction only, nor is it ever caused by a static force. It is always an impulsive translational plus rotational force. The Euclidean jolt causes two basic forms of brain, spine and other musculo-skeletal injuries: (i) localized translational dislocations; and (ii) localized rotational disclinations. In the present paper, we first review this unique mechanics of a general human mechanical neuro-musculo-skeletal injury, and then describe how it can be predicted and controlled by the new crash simulator toolbox. This rigorous Matlab toolbox has been developed using an existing third-party toolbox DiffMan, for accurately solving differential equations on smooth manifolds and mechanical Lie groups. The present crash simulator toolbox performs prediction and control of brain and spinal injuries within the framework of the Euclidean group SE(3) of general rigid body motions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.