Abstract

Transforming residual biomass into valuable energy compounds is important due to the problems of the energy crisis and environmental pollution, the biofuels produced are a valuable substitute for liquid or gaseous fuels for the transport sector becoming a cheap raw material, It reduces the concentrations of polluting gases, disposal problems and greenhouse effect emitted into the atmosphere. The object of study was the processing of residual biomass, to determine the optimal conditions of slow and low temperature pyrolysis to generate the highest volatile matter yield of lignocellulosic biomass; in addition to quantifying the Condensible Volatile Matter and the Non-Condensible Volatile Matter obtained from the pyrolytic reaction. According to D. Chiaramonti, et al., 2007, a higher liquid yield is obtained when the amount of volatiles is higher, the high MV content makes residual biomass a candidate with high potential for biofuel production, demonstrating that the highest yield of volatile matter during the pyrolysis the final temperature must be higher than 350 ° C, using a heating rate of 5 ° C / min, a residence time of 60 minutes and a particle size of 150 mc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.