Abstract

Transition metal oxides (TMOs), especially nickel oxide (NiO), are environmentally benign and cost-effective materials, and have recently emerged as potential hydrogen evolution reaction (HER) electrocatalysts for future industrial scale water splitting in alkaline environment. However, their applications in HER electrocatalysts remain challenging because of poor electronic conductivity and unsatisfactory activity. Besides, the disposal of eggshell waste is also an environmentally and economically challenging problem as a result of food industry. Here, we report the synthesis of NiO nanoparticles (NPs) encapsulated in the carbonization of eggshell membrane via a green and facile approach for HER application. Noteworthy to mention here that the active carbon was made from the waste, eggshell membrane (ESM), meanwhile, the eggshell was used as a micro-reactor for preparation of electrocatalyst, NiO/C nanocomposite. Then, the as-prepared NiO/C nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive x-ray spectroscopy (EDS). The SEM, EDS and TEM images reveal that NiO nanoparticles distributed on the carbon support, and XRD patterns confirm the presence of the nanoparticles are NiO and C hybrids. The catalytic activity and durability of NiO/C nanocomposite was examined for HER in 1 M KOH solution. It has been observed that NiO/C nanocomposite showed the better catalytic activity with the smallest Tafel slope of 77.8 mV dec−1 than single component's result, NiO particles (112.6 mV dec−1) and carbonization of ESM (94.4 mV dec−1). It indicates that the HER performance of electrocatalyst can be enhanced by synergistic effect between NiO particles and carbonization of ESM, with better durability after 500 CV cycles. Furthermore, such design principle for developing interfaces between TMOs and C by a green and facile method can offer a new approach for preparing more efficient electrocatalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.