Abstract

An interacting triangular tube bundle model is developed using capillaries of equilateral triangle cross sections. In addition to pressure equilibration among the capillaries, the non-circular tubes allow the wetting phase to reside in the corners and flow continuously in the entire model. An interacting-serial type model is constructed with step changes of tube size along the model, while the total cross-section of the model is kept constant. This model includes trapping of oil which is absent in traditional tube bundle models. Trapping of non-wetting phase in the model in imbibition processes is simulated. The relationship between the residual oil saturation and the complete capillary number CA is investigated. The simulation results obtained by this model are consistent with the results reported in literature of both experimental studies, using actual porous media, and simulations in pore-scale network models. The effects of the tube size, tube size distribution and viscosity ratio on the magnitude of entrapment are also studied using this tube bundle model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.