Abstract

Widespread invasion by non-native, submerged aquatic vegetation (SAV) may modify the sediment budget of an estuary, reducing the availability of inorganic sediment required by marshes to maintain their position in the tidal frame. The instantaneous trapping rate of suspended sediment in SAV patches in an estuary has not previously been quantified via field observations. In this study, flows of water and suspended sediment through patches of invasive SAV were measured at three tidally forced, freshwater sites, all located within the Sacramento-San Joaquin Delta in California. An acoustic Doppler current profiler deployed from a roving vessel provided velocity and backscatter data used to quantify fluxes of both water and suspended sediment. Sediment trapping efficiency, defined as instantaneous net trapped flux divided by incident flux, was positive in 24 of 29 cases, averaging + 5%. Coupled with 3 years of measured sediment flux data at one site, this suggests that trapping averages 3.7 kg m−2 year−1. This estimate compares favorably with the mean mass accumulation rate of 3.8 kg m−2 year−1 estimated from dated sediment cores collected at the study sites. Long-term measurements made upstream reveal a strong negative trend (− 1.8% year−1) in suspended sediment concentration, and intra-annual changes in both suspended sediment concentration and percent fines. The large footprint and high spatial density of invasive SAV coupled with declining sediment supply are diminishing downstream suspended sediment concentrations, potentially reducing the resiliency of marshes in the Delta and lower estuary to future sea-level rise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.