Abstract

BackgroundMosquitoes’ response to artificial lights including color has been exploited in trap designs for improved sampling of mosquito vectors. Earlier studies suggest that mosquitoes are attracted to specific wavelengths of light and thus the need to refine techniques to increase mosquito captures following the development of super-bright light-emitting diodes (LEDs) which emit narrow wavelengths of light or very specific colors. Therefore, we investigated if LEDs can be effective substitutes for incandescent lamps used in CDC light traps for mosquito surveillance, and if so, determine the best color for attraction of important Rift Valley Fever (RFV) vectors.MethodsThe efficiency of selected colored LED CDC light traps (red, green, blue, violet, combination of blue-green-red (BGR)) to sample RVF vectors was evaluated relative to incandescent light (as control) in a CDC light trap in two RVF hotspots (Marigat and Ijara districts) in Kenya. In field experiments, traps were baited with dry ice and captures evaluated for Aedes tricholabis, Ae. mcintoshi, Ae. ochraceus, Mansonia uniformis, Mn. africana and Culex pipiens, following Latin square design with days as replicates. Daily mosquito counts per treatment were analyzed using a generalized linear model with Negative Binomial error structure and log link using R. The incidence rate ratios (IRR) that mosquito species chose other treatments instead of the control, were estimated.ResultsSeasonal preference of Ae.mcintoshi and Ae. ochraceus at Ijara was evident with a bias towards BGR and blue traps respectively in one trapping period but this pattern waned during another period at same site with significantly low numbers recorded in all colored traps except blue relative to the control. Overall results showed that higher captures of all species were recorded in control traps compared to the other LED traps (IRR < 1) although only significantly different from red and violet.ConclusionBased on our trapping design and color, none of the LEDs outcompeted the standard incandescent light. The data however provides preliminary evidence that a preference might exist for some of these mosquito species based on observed differential attraction to these light colors requiring future studies to compare reflected versus transmitted light and the incorporation of colored light of varying intensities.

Highlights

  • Mosquitoes’ response to artificial lights including color has been exploited in trap designs for improved sampling of mosquito vectors

  • Mosquitoes are responsible for the transmission of several arboviral pathogens such as Rift Valley Fever virus (RVFv), which is associated with periodic outbreaks in domestic animals and humans in Africa and the Arabian Peninsula [1,2]

  • The impact of the visual cues provided by the incandescent light used in the Centers for Disease Control and Prevention (CDC) light trap is important to trapping effectiveness

Read more

Summary

Introduction

Mosquitoes’ response to artificial lights including color has been exploited in trap designs for improved sampling of mosquito vectors. We investigated if LEDs can be effective substitutes for incandescent lamps used in CDC light traps for mosquito surveillance, and if so, determine the best color for attraction of important Rift Valley Fever (RFV) vectors. The detection and monitoring of mosquitoes, is performed primarily using Centers for Disease Control and Prevention (CDC) light traps with incandescent bulbs, which are considered the industry standard for mosquito surveillance. Earlier studies suggest that insects generally see and show preferences for three specific colors—ultraviolet (UV), blue, and green [3,4] As such the incandescent light bulb currently used in mosquito surveillance may have the unintended effect of repelling some mosquito species, and may poorly target them [5] as it emits most strongly in the infrared spectra and weakly in the visible light spectra of blue, green, and red

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.