Abstract

Lattice defects in carbon nanotubes and graphene are created by focusing an electron beam in a scanning transmission electron microscope onto a 0.1 nm spot on the objects. Metal atoms migrating on the graphenic surfaces are observed to be trapped by these defects. Depending on the size of the defect, single metal atoms or clusters of several atoms can be localized in or on nanotubes or graphene layers. Subsequent escape of the metal atoms from the trapping centers gives information about the bonding between the metal atom and the defect. The process of trapping and detrapping is studied in a temperature range of 20-670 degrees C. The technique allows one to place metal atoms with almost atomic precision in graphenic structures and to create a predefined pattern of foreign atoms in graphene or carbon nanotubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.