Abstract

ABSTRACTThe solid phase epitaxial regrowth of silicon implanted with a group V dopant, such as antimony, results in excellent incorporation of the dopant atoms into silicon lattice sites. However, annealing at higher temperatures or longer times results in transient dopant precipitation with a diffusion coefficient up to five orders of magnitude above that of tracer diffusion and with a reduced activation energy.This precipitation is accompanied by the nucleation of dislocation loops that are interstitial in nature, and the transient ceases as the dislocation loops develop. It is believed that Si interstitials are trapped in a stable defect complex during the implantation process.Although they survive SPE these complexes dissolve at higher temperatures and release a large supply of interstitials which serve to promote dopant migration via an interstitialcy mechanism until they condense to form the observed dislocation loops. By following the Sb implantation with an implantation of B to an equivalent concentration profile the loop formation is efficiently suppressed. For higher B concentrations the Sb precipitation is no longer observed. Results for As implantation are similar to Sb except that As precipitates can not be directly observed. Calculations of the dopant and interstitial concentration depth distributions were also performed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.