Abstract

Trapping nanosized drugs in ultrasoft, shear-thinning hydrogels with large pores is of particular interest, yet a persistent challenge in nanomedicine due to the lack of hydrodynamic confinement. Engineering molecular interactions between a macromolecule and a supramolecular gel may address this shortcoming, providing a key route to develop advanced drug carriers without compromising matrix elasticity. Here, we show that ultrasoft zirconium-based metallogels are able to trap and reconfigure model nanodrugs (e.g., dextran) through complexation and hydrogen bonding. The diffusion coefficients of dextran molecules (Mw ∼ 10-2000 kDa, a ∼ 2-20 nm) in zirconium carbonate (ZC) metallogels (G' < 30 Pa) were measured by pulsed field gradient nuclear magnetic resonance (PFGNMR), which revealed the coexistence of hindered and enhanced collective diffusion regimes for the first time. This work may pave the way toward designing next generation ultrasoft drug carriers and functional templates to control biomacromolecular processes, such as protein folding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.