Abstract

Encapsulation of hemoglobin in a biocompatible matrix is a potential strategy for obtaining blood substitutes. Such a system would retain most of the immunogenic and functional properties of the physiologically relevant oxygen carrier but would prevent protein extravasation and dimer/dimer dissociation. We applied this approach by entrapping hemoglobin in wet nanoporous silica gel, in the presence and absence of allosteric effectors. Silica gels, although not suitable for intravenous perfusion, are inert and optically transparent, thus allowing a full characterization of the functional and structural properties of encapsulated hemoglobin by spectroscopic techniques. Results indicate that hemoglobin molecules, entrapped using different protocols, exhibit an oxygen affinity that can be modulated between 12 and 140 torr. This tunability could be exploited to meet distinct clinical needs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.