Abstract
Carbon dioxide can form compounds with nitrogen heterocyclic carbenes (NHCs) based on azoles through noncovalent interactions or by covalent bonding. A narrow dependence on the carbene structure has been observed for the preference for one or the other type of bonding, as revealed by a series of physicochemical descriptors. In our survey, a set of NHCs based on the azole family (three classical, three abnormal, and one remote) was shown to bind CO2 at the accurate G4MP2 computational level. In most cases, exothermic reaction profiles towards the covalently bound form were found, which reached stabilization enthalpies of up to -77 kJ mol-1 for the remote carbene case. Both noncovalent and covalent minima and the corresponding transition state that connects them have been identified as stationary points along the reaction coordinate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.