Abstract
We analyze a model of a double-well pseudopotential (DWPP), based in the 1D Gross-Pitaevskii equation with a spatially modulated self-attractive nonlinearity. In the limit case when the DWPP structure reduces to the local nonlinearity coefficient represented by a set of two delta-functions, analytical solutions are obtained for symmetric, antisymmetric and asymmetric states. In this case, the transition from symmetric to asymmetric states, i.e., a spontaneous-symmetry-breaking (SSB) bifurcation, is subcritical. Numerical analysis demonstrates that the symmetric states are stable up to the SSB point, while emerging asymmetric states (together with all antisymmetric solutions) are unstable in the delta-function model. In a general model, which features a finite width of the nonlinear-potential wells, the asymmetric states quickly become stable, simultaneously with the switch of the bifurcation into the supercritical type. Antisymmetric solutions may also enjoy stabilization in the finite-width DWPP structure, demonstrating a bistability involving the asymmetric states. The symmetric states require a finite norm for their existence. A full diagram for the existence and stability of the trapped states is produced for the general model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.