Abstract
Polytetrafluoroethylene (PTFE) fine powder with 93% crystallinity was irradiated by an electron beam (EB) at various temperatures under a nitrogen atmosphere. Trapped free radicals in PTFE were studied using electron spin resonance (ESR) spectroscopy. The observed spectra of the samples exposed to air after irradiation at various temperatures showed asymmetrical signals, which are middle-chain type peroxide macroradicals derived from fluoroalkyl radicals. The radical yields at each irradiation temperature increased with increasing absorbed dose, and eventually saturated. The higher irradiation temperature resulted in higher radical yields when compared at the same exposed dose. Furthermore, the G-value of the radicals (G(R·)) increases with increasing irradiation temperatures corresponding to each relaxation and transition temperature. It is concluded that the chain reaction by the fluorine extraction from the main chain due to the end-chain radical generated via β-scission after dissociative electron attachment (DEA) is enhanced by the synergistic effect of heat and radiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.