Abstract

A hard cylindrical waveguide, filled with a uniform acoustic medium, has a circular cross section. A hard sphere is located with its centre on the axis of the cylinder. We look for a trapped mode, i. e. a mode of finite energy such that the normal velocity vanishes on both the sphere and the cylinder. The velocity potentials considered here have an angular variation exp (i α ) bout the axis of symmetry, where α is the azimuthal angle; it is well known that modes of this type cannot propagate to infinity if their wavenumber lies below a critical cut-off wavenumber. It is assumed that the radius of the sphere is sufficiently small and that the wavenumber lies just below the cut-off wavenumber; it is shown by an explicit construction that a trapped mode exists when there is a certain characteristic relation between the radius of the sphere and the wavenumber of the mode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.