Abstract
Trapped modes around a row of bottom-mounted vertical circular cylinders in a channel are examined. The cylinders are identical, and their axes equally spaced in a plane perpendicular to the channel walls. The analysis has been made by employing the multipole expansion method under the assumption of linear water wave theory. At least the same number of trapped modes is shown to exist as the number of cylinders for both Neumann and Dirichlet trapped modes, with the exception that for cylinders having large radius the mode corresponding to the Dirichlet trapped mode for one cylinder will disappear. Close similarities between the Dirichlet trapped modes around a row of cylinders in a channel and the near-resonant phenomenon in the wave diffraction around a long array of cylinders in the open sea are discussed. An analogy with a mass–spring oscillating system is also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.