Abstract
In applications requiring a large magnetic force, permanent magnets with non-parallel magnetization directions can be assembled in a Halbach array to generate a large gradient of magnetic flux density. The saturation magnetization of permanent magnets, however, brings a fundamental limit on the performance of this configuration. In the present work, we investigate experimentally the assembly of cuboid bulk, large grain melt-textured YBa2Cu3O superconductors ( mm3) with orthogonal c-axes so as to form a basic unit of Halbach array. The experiments are carried out at 77 K. The experimental distribution of the magnetic flux density above the array of trapped-field superconductors is compared to a similar array made of permanent magnets. A simple analytical model is developed and is shown to accurately reproduce the main experimental observations. The results suggest that a redistribution occurs in the current flowing in the central sample when the distance between the superconductors is reduced, whereas the neighbouring superconductors are unaffected. It is shown that this current redistribution yields a reduced contribution of the central sample to the magnetic flux density above the centre of the array and a new negative contribution associated with stray fields to the magnetic flux density at this location. This interpretation is confirmed by modelling of the distribution of transport currents in the superconductor using a 3D finite element model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.