Abstract

Imagine yourself in a huge building, lost in a maze of corridors and trying to find a way out. Imagine further that whatever route you try, you always end up back in the place where you started. Although you can move around, de facto you are trapped, localized in a limited region of space. While this might sound like a surrealistic scenario for a motion picture, it is also a good analogy for how researchers attempt to trap light and other types of waves. Mario Molina and colleagues [1] at the University of Chile, Santiago, and Robert Thomson and colleagues [2] at the Heriot-Watt University in the UK now report how they have trapped light in a crystalline structure called a photonic Lieb lattice [3]. They show that light of a certain frequency can enter a lattice site and remain there, without entering the neighboring sites. The results open up alternative routes to trapping waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.