Abstract

Previous work has summarized the physics and first results of benchmarking the trapped gyro-Landau-fluid (TGLF) model for turbulent transport driven by trapped ion and electron modes, ion and electron temperature gradient (ETG) modes, and electromagnetic kinetic ballooning modes including the effects of shaped geometry. Recently, an improved collision model was implemented which provides a more accurate fit to a transport database of nonlinear collisional GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] simulations of long wavelength driftwave turbulence. The impact of the new collision model on TGLF modeling results was unknown. Using the improved TGLF model we obtain excellent agreement with the ion and electron temperature profiles from 30 DIII-D [A. Mahdavi and J. L. Luxon, Fusion Sci. Technol. 48, 2 (2005)] hybrid discharges. The transport results show that the electron energy transport tends to be dominated by short wavelength ETG modes in cases where the ion energy transport approaches neoclassical levels. The hybrid regime has significant energy confinement improvement from E×B velocity shear which is well predicted by TGLF. Weak magnetic shear and low safety factor are also shown to enhance the hybrid regime energy confinement. In high normalized β hybrids, we find that finite β effects noticably reduce the predicted electron energy transport and improve agreement with the measured electron temperature profiles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.