Abstract

ABSTRACTWe developed an original thermally stimulated exoelectron emission spectroscopy method (TSEE) of measurements of the activation energy Φ of electron (hole) traps in ultrathin Si3N4 films. The temperature spectra of TSEE of 50A silicon nitride films demonstrate several peaks: three low temperature peaks (T1 =373K, T2=423K, T3=498K) and a high temperature maximum at T4 ∼750K. The obtained values of the energy activation are Φ1=0.82 eV, Φ2=0.93 eV, Φ3=1.09 eV, and Φ4=1.73 eV. TSEE results are shown to be consistent with Φ estimates obtained from microFLASH® two bit per cell memory transistor measurements. Electrons stored at traps with Φ4=1.73 eV explain excellent microFlash retention properties. We believe that deep traps in Silicon Nitride are Hydrogen containing centers, while Hydrogen hopping is the route cause of observed material degradation in course of TSEE measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.