Abstract

We have calculated the time constants of the electron dynamics in traps in a metal–insulator–metal (MIM) plasmonic structure. Because of electron relaxation in metal, the surface plasmon polaritons decays into hot electrons near the surface of the metal, which facilitates the trap of electrons in the interfacial layer of the dielectric. We have calculated the capture and emission times separately as the electron does not follow the same mechanisms with the capture process when it is emitted from a trap at the metal/oxide interface. We have developed a quasi-two-dimensional treatment that has been modified from a previously used semiconductor/oxide junction by using Bardeen’s function to calculate the capture time. Various parameters including trap’s distance from the interface, temperature, voltage bias, and spectral nature of the hot electrons’ energy distribution influence the interaction between a plasmonic hot electron and a neutral near-interface trap in the capture process. On the one hand, the emission time is independent of the capture time, and it is determined by the tunneling time to the metal depending on the temperature and the energy difference between the trap energy levels (ground and excited states). We have showed that a wide range of capture times from seconds to picoseconds is possible for an interfacial trap at the room temperature due to the spectral energy distribution of hot electrons and dependence of the capture process on the losses in metals. On the other hand, the temperature plays the dominant role in the emission time. For the trap with 250 meV energy difference between its levels, the emission time is in the range of picosecond at room temperature. Therefore, the MIM plasmonic device can respond to a wide range of ac voltage frequencies including the ultra-fast domain. These interesting findings are useful to understand the ac response of the MIM plasmonic devices with applications in integrated photonics and ultra-fast optoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.