Abstract
The restricted three-body problem is considered for values of the Jacobi constant C near the value C 2 associated to the Euler critical point L 2. A Lyapunov family of periodic orbits near L 2, the so-called family ( c), is born for C = C 2 and exists for values of C less than C 2. These periodic orbits are hyperbolic. The corresponding invariant manifolds meet transversally along homoclinic orbits. In this paper the variation of the transversality is analyzed as a function of the Jacobi constant C and of the mass parameter μ. Asymptotical expressions of the invariant manifolds for C ≲ C 2 and μ ≳ 0 are found. Several numerical experiments provide accurate information for the manifolds and a good agreement is found with the asymptotical expressions. Symbolic dynamic techniques are used to show the existence of a large class of motions. In particular the existence of orbits passing in a random way (in a given sense) from the region near one primary to the region near the other is proved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.