Abstract

The dielectric properties of interaction site models of polar fluids may be investigated in a computer experiment using not only the charge fluctuations but also correlations corresponding to a current of moving charges. This current may be associated with a generalized dynamical polarization or separated into electric and magnetic components. The first approach deals with the dielectric permittivity related to a generalized conductivity, whereas the second leads to the functions describing polarization and magnetization fluctuations separately. The latter functions are only the source for calculating the magnetic susceptibility for a system of interaction sites. The transverse wavevector dependent and frequency dependent dielectric functions and magnetic susceptibility are evaluated for the TIP4P water model over a very wide scale of wavelengths and frequencies using molecular dynamics simulations. The transverse part of the dielectric functions may differ drastically from their longitudinal component. A relationship between the two approaches is discussed and the limiting transition to the static dielectric constant in the infinite-wavelength regime is analysed. The propagation of transverse electromagnetic waves in TIP4P water is considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.