Abstract
Transverse bending vibrations of a rotating twisted beam subjected to an axial load and spinning about its axial axis are established by using the Timoshenko beam theory and applying Hamilton’s Principle. The equations of motion of the twisted beam are derived in the twist nonorthogonal coordinate system. The finite element method is employed to discretize the equations of motion into time-dependent ordinary differential equations that have gyroscopic terms. A symmetric general eigenvalue problem is formulated and used to study the influence of the twist angle, rotational speed, and axial force on the natural frequencies of Timoshenko beams. The present model is useful for the parametric studies to understand better the various dynamic aspects of the beam structure affecting its vibration behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.