Abstract

This paper investigates the transverse vibration of a simply supported nanobeam with an initial axial tension based on the nonlocal stress field theory with a nonlocal size parameter. Considering an axial elongation due to transverse vibration, the internal axial tension is not precisely equal to the external initial tension. A sixth-order nonlinear partial differential equation that governs the transverse vibration for such nonlocal nanobeam is derived. Using a perturbation method, the relation between natural frequency and nonlocal nanoscale parameter is derived and the transverse vibration mode is solved. The external axial tension and nonlocal nanoscale parameter are proven to play significant roles in the nonlinear vibration behavior of nonlocal nanobeams. Such effects enhance the natural frequency and stiffness as compared to the predictions of the classical continuum mechanics models. Additionally, the frequency is higher if the precise internal axial load is considered with respect to that when only the approximate internal axial tension is assumed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.