Abstract
In the present paper, an analytical method is developed to investigate the effects of added mass on natural frequencies and mode shapes of Euler-Bernoulli beams carrying concentrated masse at arbitrary position submerged in a fluid media. A fixed-fixed beams carrying concentrated masse vibrating in a fluid is modeled using the Bernoulli-Euler equation for the beams and the acoustic equation for the fluid. The symbolic software Mathematica is used in order to find the coupled vibration frequencies of a beams with two portions. The frequency equation is deduced and analytically solved. The finite element method using Comsol Multiphysics software results are compared with present method for validation and an acceptable match between them were obtained. In the eigenanalysis, the frequency equation is generated by satisfying all boundary conditions. It is shown that the present formulation is an appropriate and new approach to tackle the problem with good accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering & Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.