Abstract

Abstract The wind generation of transverse thermocline motions in an infinitely long two‐layer channel is studied theoretically. Winds both along and across the channel are considered. Horizontal momentum transfer is parameterized by a constant coefficient of eddy viscosity. For a channel narrow compared with its internal Rossby radius of deformation, the transverse motions are uni‐modal and generated most efficiently by long‐shore winds. Theoretical results in this narrow channel limit agree well with observations made at Babine Lake, British Columbia. For a channel wide compared with its Rossby radius, the response is multi‐modal, especially for cross‐channel winds. For a model Lake Michigan, computed interfacial displacements due to a steady wind either across or along the channel are small compared with the observed displacements. However, a semi‐diurnal wind (in either direction) is in near resonance with the seventh transverse mode. Thus multi‐modal displacements as large as those observed could pos...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.