Abstract

Collective magnetization dynamics in nanoparticle assemblies is of current interest as it forms the basis of high density storage media. It is important to understand how interparticle interactions in a three-dimensional (3D) arrangement of superparamagnetic nanoparticles would affect the overall effective magnetic anisotropy of the system. We have studied the influence of varying strengths of dipolar interaction on the static and dynamic magnetic properties of surfactant-coated monodispersed manganese zinc ferrite nanoparticles using reversible transverse susceptibility. We track the evolution of the anisotropy peaks with varying magnetic field, temperature, and interaction strength. The blocking temperature shows an increase from 28 to 32 K and the coercive field (at 10 K) shows an increase from 144 to 192 Oe as the system changes from the case of weakly interacting to strongly interacting 3D assembly of the particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.