7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1109/access.2019.2951133
Copy DOIJournal: IEEE Access | Publication Date: Jan 1, 2019 |
Citations: 16 | License type: CC BY 4.0 |
A high-sensitive and transverse-stress compensated methane sensor based on a photonic crystal fiber long-period grating (PCF-LPG) is proposed. The outermost layer of the PCF consists of six large sideholes, five of which are coated with methane-sensitive compound film to achieve methane measurement. Such side-hole structure is helpful for gas sensitive reaction, but not conducive to avoiding external stress interference. Therefore, the last large hole is plated with silver layer to eliminate the cross-sensitivity effect through adding a Surface Plasmon Resonance (SPR) sensing channel with the consideration of photo-elastic effect and material deformation. Results show that the methane gas sensitivity can reach up to 6.39nm/% with the transverse-stress compensation. The sensor is very simple and effective, which provides a new method of gas measurement combined with different actual conditions.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.